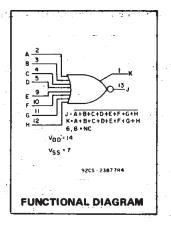


Data sheet acquired from Harris Semiconductor SCHS059

CMOS 8-Input NOR/OR Gate

High-Voltage Types (20-Volt Rating)


■ CD4078B NOR/OR Gate provides the system designer with direct implementation of the positive-logic 8-input NOR and OR functions and supplements the existing family of CMOS gates.

The CD4078B types are supplied in 14-lead dual-in-line ceramic packages (D and F suffixes), 14-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

MAYIMIN BATINGO Abaatuta Mandarusa Vatura

Features:

- Medium-Speed Operation: tpHL, tpLH = 75 ns (typ.) at VDD = 10 V
- Buffered inputs and output 5-V, 10-V, and 15-V parametric ratings
- Standardized symmetrical output characteristics
- 100% tested for quiescent current at 20 V Maximum input current of 1 μ A at 18 V over full package-temperature range:
- 100 nA at 18 V and 25°C Noise margin (over full package-temperature
- range): 1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

CD4078B Types

8.	MAXIMUM RATINGS, Absolute-Maximum
	DC SUPPLY-VOLTAGE RANGE, (VDD)
0.5V to +20V	Voltages referenced to VSS Terminal)
0.5V to V _{DD} +0.5V	INPUT VOLTAGE RANGE, ALL INPUTS
±10mA	DC INPUT CURRENT, ANY ONE INPUT
	POWER DISSIPATION PER PACKAGE (PD
500mW	For T _A = -55°C to +100°C
Derate Linearity at 12mW/°C to 200mW	
OR	DEVICE DISSIPATION PER OUTPUT TRAN
ANGE (All Package Types) 100mW	FOR TA = FULL PACKAGE-TEMPERATUI
55°C to +125°C	
65°C to +150°C	STORAGE TEMPERATURE RANGE (Tstr)
*	LEAD TEMPERATURE (DURING SOLDERIN
rom case for 10s max+265°C	At distance $1/16 \pm 1/32$ inch (1.59 ± 0.79 n

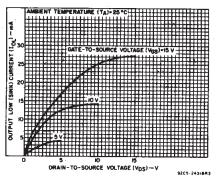
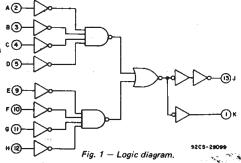



Fig. 2 - Typical output low (sink) current characteristics.

RECOMMENDED **OPERATING CONDITIONS**

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	Min.	Max.	Units
Supply-Voltage Range (For Ta Full Package			
Temperature Range)	3	18	V

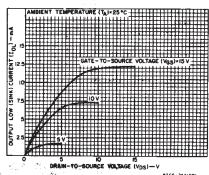


Fig. 3 - Minimum output low (sink) current characteristics.

DYNAMIC ELECTRICAL CHARACTERISTICS

At $T_A = 25^{\circ}C$; Input t_r , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ k Ω

CHARACTERISTIC	TEST COND	TEST CONDITIONS				
		V _{DD} VOLTS	TYP.	MAX.	UNIT	
Propagation Delay Time,		5	150	300	144	
^t PHL, tPLH		10	75	150	ns	
		15	55	110		
Transition Time,		5	100	200	1	
		10	50	100	ns	
		15	40	80		
Input Capacitance, CIN	Any Input	_,	5	7.5	pF	

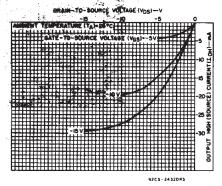
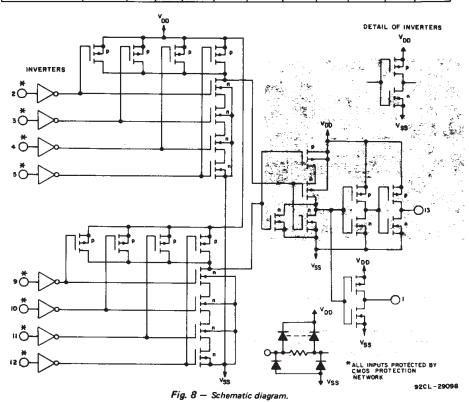



Fig. 4 - Typical output high (source) current characteristics.

CD4078B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER- ISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)						 	
	Vo	VIN	VDD	ĺ				+25			UNITS
	(V)	(V)	(V)	55	-40	+85	+125	Min.	Тур.	Мах.	
Quiescent Device.	_	0,5	5	0.25	0.25	7.5	7.5	_	0.01	0.25	
Current,	-	0,10	10	0.5	0.5	15	15	-	0.01	0.5	1
IDD Max	_	0,15	15	1	1	30	30	_	0.01	1	μΑ
	-	0,20	20	5	5	150	150	_	0.02	5	1
Output Low (Sink) Current	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1		
	0.5	0,10	10	1.6	1.5	1.1	0.9	13	2.6		
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3 4	6.8		
Output High (Source) Current, IOH Min.	4.6	0,5	5	-0.64	-0.61	-0.42	- 0.36	~0.51	- 1		mA
	2.5	0,5	5	-2	-18	-1.3	-1 15	-16	-32		
	9.5	0,10	10	-16	-1.5	-11	-0.9	-1.3	-26		
	13.5	0,15	15	-4.2	- 4	-2.8	-2.4	-3.4	-68		
Output Voltage:	-	0,5	5	0.05					0	0.05	
Low Level,	_	0,10	10	0.05					0	0.05	
VOL Max.	- ,	0,15	15	0.05					0	0.05	v
Output Voltage: '	-	0,5	5	4 95				4.95	5		1
High Level	_	0,10	10	9.95			9.95	10			
VOH Min.		0.15	15	14.95				14.95	15		
Input Low	0.5,4.5	_	5	1.5				1.5			
Voltage,	1,9		10	3				_		3	
VIL Max.	1.5,13.5	+ .,	. 15	4			_	-	4		
Input High Voltage, VIH Min.	0.5,4.5		5		- :	3.5	•	3.5	_		٧
	1,9	_	10	7			7	_			
	1.5,13.5	-	15	11 11 -				_			
Input Current	JB7 4	0,18	18	±0.1	±0.1	±1	±1	-	±10-5	±0 1	μА

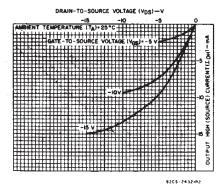


Fig. 5 — Minimum output high (source) current characteristics.

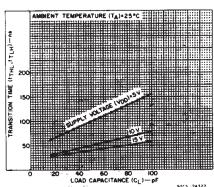


Fig. 6 — Typical transition time as a function of load capacitance.

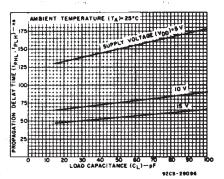


Fig. 7 — Typical propagation delay time as a function of load capacitance.

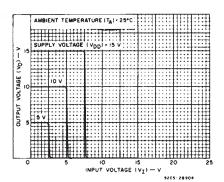


Fig. 9.— Typical voltage transfer characteristics (NOR output).

CD4078B Types



Fig. 10 — Typical dynamic power dissipation as a function of frequency.

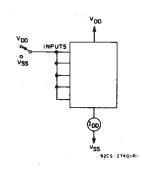


Fig. 11 - Quiescent-device-current test circuit.

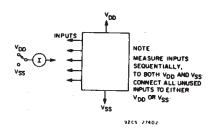


Fig. 12 - Input current test circuit.

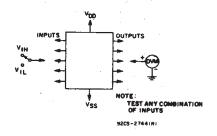


Fig. 13 - Input-voltage test circuit.

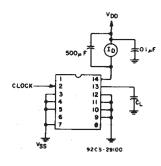
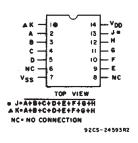
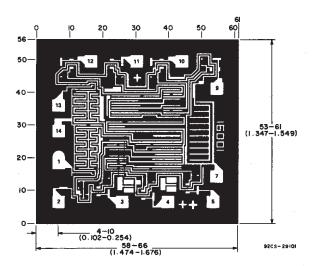




Fig. 14 - Dynamic power dissipation test circuit.

TERMINAL ASSIGNMENT

Dimensions and pad layout for CD4078BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $(10^{-3} \, \text{inch})$.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated