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Low-Complexity RLS Algorithms Using
Dichotomous Coordinate Descent Iterations

Yuriy V. Zakharov, Member, IEEE, George P. White, and Jie Liu

Abstract—In this paper, we derive low-complexity recursive least
squares (RLS) adaptive filtering algorithms. We express the RLS
problem in terms of auxiliary normal equations with respect to
increments of the filter weights and apply this approach to the
exponentially weighted and sliding window cases to derive new
RLS techniques. For solving the auxiliary equations, line search
methods are used. We first consider conjugate gradient iterations
with a complexity of � �� operations per sample; being the
number of the filter weights. To reduce the complexity and make
the algorithms more suitable for finite precision implementation,
we propose a new dichotomous coordinate descent (DCD) algo-
rithm and apply it to the auxiliary equations. This results in a
transversal RLS adaptive filter with complexity as low as � mul-
tiplications per sample, which is only slightly higher than the com-
plexity of the least mean squares (LMS) algorithm (� multi-
plications). Simulations are used to compare the performance of
the proposed algorithms against the classical RLS and known ad-
vanced adaptive algorithms. Fixed-point FPGA implementation of
the proposed DCD-based RLS algorithm is also discussed and re-
sults of such implementation are presented.

Index Terms—Adaptive filter, conjugate gradient, DCD algo-
rithm, dichotomous coordinate descent, FPGA implementation,
line search, RLS.

I. INTRODUCTION

I N adaptive filtering, the recursive least squares (RLS) al-
gorithm is known to possess fast convergence, but also to

have a high complexity of operations per sample (
being the filter length) [1], [2]. There has been much research
interest in the reduction in complexity of the RLS algorithm.
It is desirable to find a solution that has complexity similar to
that of the least mean squares (LMS) algorithm, i.e., mul-
tiplications per sample. In [2], fast RLS algorithms are summa-
rized in terms of complexity. The fixed-order adaptive filters, ex-
ploiting the shifted structure of data vectors, have a complexity
of . The fastest among them in terms of multiplications is
the fast Kalman filter that requires multiplications [2]. The
fixed-order algorithms suffer from numerical instability in fi-
nite precision implementation. This problem is partly overcome
by using stabilization techniques. However, these make the al-
gorithms more complicated, and, even with such techniques,
they can still exhibit instability [2]. Another group of fast adap-
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tive algorithms is the lattice algorithms. However, lattice algo-
rithms do not provide the filter weights required in many appli-
cations, and their complexity is still high; the techniques consid-
ered in [2] require at least multiplications and divisions per
sample. Recently, the KaGE RLS algorithm was introduced [3];
it uses the shifted structure of data vectors, generates the filter
weights, and its complexity is , more specifically,

multiplications per sample. However, the KaGE al-
gorithm also requires divisions.

Many adaptive algorithms require division and square root
operations, which are complex for implementation, especially
in hardware, i.e., they require a significant chip area and high
power consumption. Although simpler than divisions, multipli-
cations are still significantly more difficult for implementation
than additions. Therefore, it is important to design algorithms
that have no division, no square root operations, and as few mul-
tiplications as possible.

Many fast adaptive algorithms are based on matrix inversion
which results in instability in finite precision implementation.
An alternative approach based on solving the normal equations
[4] often results in stable adaptive algorithms. Such an approach
is used in the direction set (or line search) based adaptive al-
gorithms. These techniques have either a good RLS-like per-
formance but a high complexity of , e.g., the conjugate
gradient [5]–[8] or Euclidean direction search (EDS) [9] adap-
tive algorithms, or a low complexity of but a low perfor-
mance, e.g., the fast EDS algorithm [9]–[11] or the stochastic
line search algorithm [12].

The contributions of this paper are as follows:
1) A new formulation of the RLS problem in terms of a se-

quence of auxiliary normal equations with respect to in-
crements of the filter weights is proposed (Section II). This
formulation, though simple, results in adaptive filtering al-
gorithms with high performance.

2) Two new general structures of adaptive filters for the expo-
nentially weighted and sliding window RLS problems are
introduced (Sections II-A and -B, respectively), and further
specified for transversal adaptive filters (Section II-C).

3) 3) New RLS adaptive filtering algorithms based on conju-
gate gradient (CG) and coordinate descent (CD) iterations
are proposed (Sections III-A and -B, respectively), whose
particular implementations correspond to known adaptive
algorithms.

4) A new dichotomous coordinate descent (DCD) algorithm
is proposed (Section III-C).

5) New DCD-based RLS algorithms, in particular, DCD-
based transversal RLS algorithms with complexity as low
as multiplications per sample are proposed.
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6) FPGA design of DCD-based adaptive RLS algorithms is
described, that significantly outperforms FPGA designs of
known RLS algorithms, such as the QRD-RLS algorithm
(Section IV).

The rest of the paper is organized as follows. In Section IV,
we consider practical issues of implementing the proposed al-
gorithms. Section V presents simulation results that show the
performance of the proposed algorithms against the classical
RLS algorithm and other known adaptive algorithms. Finally,
Section VI gives conclusions.

A part of the material of this paper, namely those related to the
exponentially weighted DCD-based RLS algorithm, was pre-
sented at the conference Asilomar 2007.

Notations: In this paper, we use capital and small bold fonts
to denote matrices and vectors, respectively; e.g., and . Ele-
ments of the matrix and vector are denoted as and .
denotes transpose of . A th column of is denoted as .
The variable is used as a time index, i.e., is the matrix

at time instant . The variable is used as an iteration index.
Only real-valued adaptive filtering is considered in this paper;
the extension to the complex-valued case is straightforward.

II. PROBLEM STATEMENT AND RECURSIVE SOLUTION OF THE

RLS NORMAL EQUATIONS

In the RLS problem, at every time instant ,
an adaptive algorithm should find a solution to the normal
equations

(1)

where is assumed to be a symmetric positive-definite (cor-
relation) matrix of size and are - length
vectors. The matrix and vector are known, whereas
the vector should be estimated. Direct methods for solving
the system are too complex for most applications of adaptive fil-
tering, especially if is high; e.g., the Cholesky decomposition
finds the solution with a complexity [13]. In the clas-
sical RLS algorithm, the solution is represented in the form [2]:

, where ; can be computed
recursively with a complexity of [2]. We adopt another
approach, which is based on transforming the original sequence
of normal equations (1) into a sequence of auxiliary normal
equations that are then solved by using iterative techniques.

Let, at time instant , a system of equations
be approximately solved, and the ap-

proximate solution is . Let

(2)

be a residual vector for this solution. At time instant ,
the system (1) is to be solved. We denote

, and

(3)

Our aim is to find a solution of (1) by exploiting the previ-
ously obtained solution and residual vector .
Equation (1) can be rewritten as

(4)

TABLE I
RECURSIVELY SOLVING A SEQUENCE OF SYSTEMS OF EQUATIONS

and represented as a system of equations with respect to the
unknown vector

(5)

Instead of solving the original problem (1), one can find a solu-
tion of the auxiliary system of equations

(6)

where

(7)

and obtain an approximate solution of the original system (1) as

(8)

It is seen from (7) that this approach requires the residual vector
for the solution to the original system (1) to be known

at each time instant . After some algebra, we obtain that the
residual vector for the solution to the auxiliary system
(1) is also equal to , i.e.,

(9)

(10)

Thus, we can now formulate a recursive approach for solving a
sequence of systems of equations as presented in Table I. This
approach allows us, at each time instant , instead of solving the
original problem (1) with respect to the filter weights , to
deal with an auxiliary problem (6) with respect to the increment
of the filter weights . The system (6) takes into account
the accuracy of the previous solution through the residual vector

, as well as the variation of the problem to be solved
through the increments and . If a true solution
to the system (6) is found then is the true solution to the
problem (1) as well.

When using direct methods for solving the normal equations,
both approaches would require approximately the same compu-
tational load. However, when using iterative techniques, the new
approach is preferable, since it corresponds to solving the orig-
inal problem with (implicit) initialization by the solution of the
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problem for the previous time instant. Therefore, with the same
accuracy of calculating the vector , the proposed approach
will typically require a smaller number of iterations. If, in ad-
dition to finding a solution vector , the iterative equation
solver produces the residual vector at a low computational
cost, and a simple way of computing the product
also exists, the complexity of adaptive filtering based on the new
approach will be lower than that with the original approach.

Below, the new approach is applied to the exponentially
weighted (Section II-A) and sliding window (Section II-B)
RLS problems. The new algorithms obtained provide both the
filter output and filter weights updated at every time instant .
The most computationally demanding steps of the algorithms
are the updating of the correlation matrix and the solution
of the auxiliary equations. The shifted structure of the input data
allows the complexity of the matrix updating to be significantly
reduced (Section II-C). Notice that, at step 3, a technique for
solving the auxiliary equations should provide both a solution

and the residual vector ; such techniques are con-
sidered in Section III.

A. Exponentially Weighted RLS Algorithm

The exponentially weighted RLS (ERLS) problem deals, at
every time instant , with a -length data vector and a
scalar desired signal . An adaptive algorithm should find a
vector that minimizes the error [2]

(11)

where is a regularization matrix and is a forgetting
factor. The regularization matrix is usually chosen as a diagonal
matrix , where the regularization parameter is
a small positive number and is the identity matrix
[1], [2]. The vector can be found by solving the normal
equations (1) with the system matrix and the right-hand vector
given by [1]

(12)

(13)

To apply the method in Table I to this problem, the vector
should be expressed in terms of and . From (12) and
(13), we obtain

(14)

(15)

By using (2) and (14), we obtain

(16)

where is the adaptive filter output at time instant

(17)

TABLE II
EXPONENTIALLY WEIGHTED RLS ALGORITHM

Using (16), we obtain step 2 for the method in Table I:

(18)

where is the a priori estimation error

(19)

Finally, the exponentially weighted RLS algorithm is summa-
rized in Table II, which also shows the complexity of different
steps of the algorithm in terms of multiplications and additions.
Notice that the complexity of step 5 depends on the technique
used for solving the normal equation. We denote the number
of multiplications and the number of additions required by
the technique; these figures will be given in Section III.

B. Sliding Window RLS Algorithm

The sliding window RLS (SRLS) problem, at each sample ,
deals with finding a vector minimizing the error

(20)

where is the sliding window length. Solution to this problem
is equivalent to solution of the normal equations (1) where the
matrix and vector are updated as [2]

(21)

(22)

To find the vector , we notice that

(23)

Authorized licensed use limited to: Bharat University. Downloaded on February 10, 2010 at 07:08 from IEEE Xplore.  Restrictions apply. 



ZAKHAROV et al.: LOW-COMPLEXITY RLS ALGORITHMS 3153

TABLE III
SLIDING WINDOW RLS ALGORITHM

where , and

(24)

From (23) and (24), we obtain step 2 for the method in Table I:

(25)

where . Finally, the
sliding window RLS algorithm is summarized in Table III.

C. Transversal RLS Algorithms

The RLS algorithms described in Tables II and III can be
used in applications with arbitrary data vectors , i.e., data
vectors with no specific structure. The classical example of such
applications is antenna array beamforming [1], [2].

For shift-structured input data

where is a discrete-time signal, updating the correlation
matrix is significantly simplified. The lower-right

block of can be obtained by copying the
upper-left block of . The only
part of the matrix that should be directly updated is the
first row and first column. Due to symmetry of the matrix, it is
enough to only calculate the first column. The updating for the
exponentially weighted RLS problem is described as

(26)

TABLE IV
EXPONENTIALLY WEIGHTED TRANSVERSAL RLS ALGORITHM

TABLE V
SLIDING WINDOW TRANSVERSAL RLS ALGORITHM

and, for the sliding window RLS problem

(27)

The transversal ERLS and SRLS algorithms are presented in
Tables IV and V, respectively.
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TABLE VI
EXACT LINE SEARCH METHOD

III. LINE SEARCH METHODS

Many techniques can be used for solving the auxiliary normal
equations (6). We are interested here in iterative algorithms as
opposed to the direct solution algorithms because of lower com-
putational complexity of the former. Specifically, we will con-
sider line search methods that provide both a solution vector
and the residual vector , which are required for applying the ap-
proach described in Table I. In this section, for clarity we omit
the time index from matrix and vector notations.

Solving the normal equations (6) is equivalent to minimizing
the quadratic function

(28)

In a line search method, at each iteration , the solution is
updated in a direction that is chosen to be non-orthogonal to
the residual vector , i.e., . The step size minimizing
the function is ; this step size
corresponds to the exact line search method [14]–[16]. A gen-
eral description of the exact line search method [13] is given in
Table VI, where denotes the number of iterations.

The conjugate gradient (CG) [13] and coordinate descent
(CD) algorithms considered below in Sections III-A and -B,
respectively, are examples of the exact line search method.
Inexact line search methods, though not providing the max-
imum decrement for a particular iteration, can improve the
convergence speed in a sequence of iterations [15], [17]. The
dichotomous coordinate descent (DCD) algorithm presented in
Section III-C, is an inexact line search method.

A. Conjugate Gradient Algorithm

An efficient variant of the line search method is the CG al-
gorithm [13] shown in Table VII. At the first iteration, ,
the direction vector is the residual vector: . At other iter-
ations, , the direction is updated to guarantee -con-
jugacy of the direction vectors. Due to its fast convergence, the
CG method has already been used for adaptive filtering for a
long time (e.g., see [5], [7], [18], [8] and references therein).
Although, the CG algorithm shows fast convergence (as will be
seen from simulation results in Section V), its complexity is too
high for fast adaptive filtering. In general, the complexity of the

TABLE VII
CONJUGATE GRADIENT ALGORITHM

algorithm is per update. The algorithm also requires di-
visions at steps 1 and 3.

It can be shown that the CG adaptive algorithm as described
in Tables V and VII for the particular case produces
the same filter weights and output signal as the affine projection
algorithm [2] of projection order and the CG adaptive algo-
rithm proposed in [5].

B. Coordinate Descent (CD) Algorithm

If the directions are chosen as Euclidean coordinates, i.e.,
, where all elements of the vector are zeros, except

the th element that is equal to one, the iterations are signifi-
cantly simplified. In this case, for the exact line search,

is the th column of the correlation matrix . Thus,
the most complicated step of the line search method (step 2 in
Table VI), requiring the matrix-vector multiplication of com-
plexity , is completely eliminated. Moreover, the other
steps are also simplified ,
and . If the directions are chosen in a cyclic
order , we arrive at Gauss-Seidel iterations, and
the EDS algorithm of complexity [11]. However, such
choice is not efficient in our case, as it requires at least itera-
tions at a time instant, resulting in high complexity. Attempts to
distribute the Euclidean directions in time by assigning one
direction to one time instant has led to the fast EDS algorithm
[11], [9]. The maximum complexity of the fast EDS algorithm
(including the filtering) is multiplications per time
instant [11]. However, the convergence of the fast EDS algo-
rithms is slow [11], [19]. Moreover, our simulation results (not
presented here) show that the fast EDS algorithm is sensitive to
the order of updating the filter weights and experiences insta-
bility at the initial part of the learning process. A more efficient
method for selecting the leading index is therefore important
to speed up the convergence.

For the exact line search method in Table VI, we have [13]

(29)
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TABLE VIII
COORDINATE DESCENT (CD) ALGORITHM

The (nonnegative) term shows how quickly
the function decreases at an update. For an exact coordi-
nate search, we have

(30)

If the matrix is calculated by averaging over a relatively long
time interval, are approximately constant over . There-
fore, the coordinate direction chosen according to

(31)

at a particular iteration, will provide the largest decrement of
. The CD algorithm with the leading index (31) is presented

in Table VIII. One update in the algorithm requires only mul-
tiplications and additions. Note that the CD algorithm is also
known as Southwell’s relaxation method [20], [17]. Its conver-
gence to the optimal solution for the normal equations follows
from the following.

Theorem [17]: If the leading index of a relaxation coordi-
nate descent process

for a linear system of equations with a positive-definite matrix
is chosen such that, at each iteration

and if , then the process converges to
the optimal solution of the system and there exists a number

, such that .
In our case, for all , we have and . There-

fore, the theorem can be directly applied to the CD algorithm in
Table VIII.

It can be shown that the RLS algorithm based on the CD
iterations with the leading index (31) produces the same filter
weights and output signal as that of the recursive adaptive
matching pursuit (RAMP) algorithm proposed in [21].

TABLE IX
DCD ALGORITHM

C. Dichotomous Coordinate Descent (DCD) Algorithm

The DCD algorithm [22] is presented in Table IX. It updates
the solution in directions of Euclidean coordinates in the cyclic
order . Such choice of directions is used in the
EDS algorithm. However, in the DCD algorithm, the step-size

is chosen in a different way—it takes on one of prede-
fined values corresponding to binary representation of elements
of with bits within an amplitude range . The
algorithm starts the iterative search from the most significant
bits of elements in . As the most significant bits have been
updated, the algorithm starts updating the next less significant
bit, and so on. Due to the quantized step-size, there are ‘un-
successful’ iterations (decided at step 3) without updates of the
solution and “successful” iterations where the solution and the
residual vector are updated (steps 4 and 5). The DCD algorithm
as described above can be found in [23].

The complexity of the DCD algorithm depends on the imple-
mentation platform. In [23], it is estimated for software imple-
mentation, which usually requires an extra operation for calcu-
lating at step 3. For a hardware implementation, in which
we are interested here, step 3 can be considered as one addition
since calculation of can be incorporated in an adder used for
the comparison. The complexity can be considered as a random
number with an upper bound corresponding to a worst-case sce-
nario as follows. For an th bit, , within
one pass there is one “successful” iteration and
then, in another pass, “unsuccessful” iterations; this will re-
quire additions. For the last (least significant)
bit, , there are passes each with one “suc-
cessful” iteration; this will require addi-
tions. Thus, the worst-case complexity is
additions. Notice that the average complexity will be lower.
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TABLE X
DCD ALGORITHM WITH LEADING ELEMENT

However, in hardware implementation one should take into ac-
count the worst-case complexity.

If , the complexity of the DCD algorithm in
Table IX is approximately upper bounded by . However,
if the number of updates is small (which is the case that
we are interested in here), the term will dominate in the
DCD complexity. A computationally more efficient variant of
the DCD algorithm can be proposed that eliminates this term.
This new version of the DCD algorithm finds a ‘leading’ ( th)
element in to be updated similarly to the CD algorithm
in Table VIII. The new DCD algorithm is shown in Table X.
It is seen that one update in the DCD algorithm requires
bit-shifts, additions, and comparisons; the latter can be
counted as additions. With updates, the complexity of
the DCD algorithm is upper limited by
additions. This corresponds to a worst-case scenario when
the algorithm in Table X performs all updates, i.e., the
condition at step 3 is never satisfied. The important property
of the DCD algorithm is that it requires no multiplication,
no division, and no square root operations. Note also that the
parameter defines a maximum number of filter weights that
can be updated at a time instant. Thus, adaptive filtering based
on coordinate descent search and, in particular, on the DCD
algorithm, implements a selective partial update [24].

It is seen from the algorithm description that, in any it-
eration at step 4, the step size satisfies the relationship

which results in .
Strictly speaking, this means that conditions of the convergence
theorem in Section III-B are not satisfied at every iteration

. However, as step 4 in Table X describes a quantization
process, we can assume that the parameter is uniformly
distributed on [1, 2) and, therefore, with probability 1, these
conditions will be satisfied. Note that the decrement of the cost
function (28) at every iteration is given by

(32)

which shows that the cost function decreases at every iteration.

TABLE XI
COMPLEXITY OF PROPOSED AND KNOWN TRANSVERSAL

ADAPTIVE ALGORITHMS

If, in the DCD algorithm described in Table X, step 4 is re-
placed with , we obtain

which results in . In this case, the con-
vergence theorem is satisfied for . However, this
choice slows down the convergence. Multiple experiments have
shown that the DCD algorithm with , presented in
Table X, is preferable over that with .

IV. PRACTICAL ISSUES

In this section, we address some practical issues related to
implementation of the proposed adaptive algorithms.

For the exponentially weighted RLS algorithm in Table II, the
matrix update, in the general case, requires multiplications
and additions. However, if the forgetting factor is chosen as

with a positive integer , then the multiplication by
in step 1 can be replaced by addition and bit-shift operations,

thus giving the total number of multiplications and additions
and , respectively. Similar approach is also applicable to the
exponentially weighted transversal RLS algorithm in Table IV,
thus reducing the number of multiplications to and increasing
the number of additions to . Moreover, calculation of
at step 4 is also simplified to multiplications and addi-
tions. However, even if is chosen differently, it is not difficult
to accurately approximate it by a number making the multipli-
cation by simple for implementation.

In the transversal adaptive filters, the direct copying of the
matrix block would require significant pro-

cessor time. To avoid the copying, a simple memory address
modification can be performed, when the block does not change
its position in the memory and only the row and column ad-
dresses are updated. This address update was used in our FPGA
design described here.

Table XI shows the complexity of the proposed and known
transversal adaptive filters; the complexity for the RLS and
NLMS algorithms is from [2]. The complexity for the ERLS
algorithms takes into account the choice of the forgetting factor
as with a positive integer . For additions, we
only show figures that are or and ignore figures
that are or . It is seen that the transversal
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TABLE XII
FPGA RESOURCES FOR ERLS-DCD ALGORITHMS

ERLS-DCD algorithm requires only multiplications per
sample and no division. The transversal SRLS-DCD algorithm
requires multiplications and no division.

The ERLS-DCD algorithms have been implemented on a
Xilinx Virtex-II Pro Development System with a XC2VP30
FPGA running at 100 MHz.1 VHDL was used to describe the
design, and the Xilinx ISE 8.1 was used for synthesizing and
downloading the design to the target platform.2 The input data

are represented in 16-bit fixed-point Q15 format [25].
The desired signal is represented by 32 bits in the Q15
format. The matrix and vectors , and are
represented by 32 bits in the Q15 format. When computing the
filter output , each multiplication results in 47 bits in the
Q30 format; after accumulation, is truncated to 32 bits in
the Q15 format. The error signal is then represented by
32 bits in the Q15 format. The forgetting factor is chosen as

, where is an integer; thus, the multiplications
and are replaced by bit-shifts and additions.

The FPGA resources for four designs are presented in
Table XII. Two figures are shown for every resource: number
of elements used and the percentage of the resource available
on the FPGA device. The ERLS-DCD algorithm as described
in Tables II and X was implemented for the cases and

with . This design is suitable for arbitrary
data vectors , e.g., it is applicable for adaptive antenna
beamforming. For an 8-element antenna we obtain the update
rate 205 kHz which is approximately 60 times higher than that
of a design based on the QRD-RLS algorithm for 9-element
antenna and with approximately the same chip area [26], [27].
The transversal ERLS-DCD algorithm with is im-
plemented by using a serial design of the DCD algorithm [28]
with (100 MHz) cycles for one update. The update rate
can be increased by reducing and/or using a parallel design
of the DCD algorithm [27]. It is seen that the whole design
requires at most 10% of the resources available on the FPGA
device. More details on FPGA implementation of the proposed
adaptive filtering algorithms will be presented in a separate
paper. We have carried out many numerical experiments with
these designs, in particular, a long-time experiment where

1[Online] Available: http://www.xilinx.com
2See footnote 1.

vectors were processed. No instability problem was
observed during the experiments.

V. NUMERICAL RESULTS

Here, we present results obtained by computer simulation.
We compare the mean squared error (MSE) performance of
the proposed adaptive algorithms against the classical exponen-
tially weighted RLS algorithm, NLMS algorithm, and a recently
proposed efficient conjugate gradient control Liapunov func-
tion (CG-CLF) algorithm with complexity [8]. Only
scenarios with the time-shifted structure of input data, corre-
sponding to the transversal adaptive filter, are considered. The
input data are generated according to

(33)

where is the additive zero-mean Gaussian random noise
with variance . The vector

contains either a real speech signal or autoregressive
correlated random numbers given by

(34)

where is the autoregressive factor and
are uncorrelated zero-mean random Gaussian numbers of unit
variance. The MSE in a simulation trial is calculated as

(35)

The MSEs obtained in trials are averaged and plotted
against the time index . Results in Figs. 1 to 5 below are
obtained by floating point simulation. Fig. 6 compares floating
and fixed point simulation results.

Fig. 1 shows the MSE performance of the ERLS-CG and
ERLS-DCD algorithms against the RLS, NLMS, and CG-CLF
algorithms. All elements of the impulse response are kept
constant over the first 1000 samples; the elements are inde-
pendent random numbers uniformly distributed on .
At time instant , a new vector is generated and
kept constant over the remaining samples. It is seen that, in the
case of , the ERLS-DCD algorithm outperforms the
ERLS-CG algorithm, but is inferior to the CG-CLF algorithm.
For , the ERLS-DCD and CG-CLF algorithms demon-
strate similar performance, whereas the ERLS-CG algorithm
converges faster. For , the ERLS-DCD and ERLS-CG
algorithms outperform the CG-CLF algorithm. For a fixed ,
the ERLS-CG algorithm converges faster than the ERLS-DCD
algorithm. However, this is achieved at the expense of a sig-
nificant increase in the complexity (see Table XIII). Under a
fixed complexity, the ERLS-DCD algorithm provides signifi-
cantly faster convergence than the ERLS-CG algorithm. Fig.
1(b) shows that after a change of the impulse response, only
two updates are enough for both the ERLS-CG and
ERLS-DCD algorithms to approach the RLS performance. The
results for are not shown as they are not distinguishable
from that of the classical RLS algorithm.

Fig. 2 compares the performance of the ERLS-CD and
ERLS-DCD algorithms. It is seen that, with increase in ,
the ERLS-CD algorithm approaches the RLS performance.
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Fig. 1. MSE performance of the ERLS-CG and ERLS-DCD algorithms against
the RLS, NLMS, and CG-CLF algorithms; � � ��� � � � � ������ �
������ � � �� �� � ��� � ��� 	 � ���� 
 � ������ � ���. (a)
Initial convergence. (b) Convergence after a change of the impulse response.

However, the performance of the ERLS-DCD algorithm is
superior to that of the ERLS-CD and, as seen from Table XIII,
it requires a significantly fewer number of multiplications.

Fig. 3 shows the MSE performance of the SRLS-CG and
SRLS-DCD algorithms against the RLS and NLMS algorithms.
Although the SRLS-DCD algorithm has a slightly higher com-
plexity than the ERLS-DCD algorithm, it achieves the same
steady-state MSE more quickly, after a change of the impulse
response. Therefore, for some applications, it will be benefi-
cial to use the SRLS-DCD algorithm. In similarity to results
for the ERLS algorithms, the SRLS-DCD requires more up-
dates than the SRLS-CG algorithm to achieve the same conver-
gence speed. However, the SRLS-DCD algorithm has signifi-
cantly lower complexity.

The results in Fig. 4 correspond to the application of
adaptive filtering to acoustic echo cancellation with a long
impulse response, . Elements of the impulse response

, are independent zero-mean random

Fig. 2. MSE performance of the ERLS-CD and ERLS-DCD algorithms against
the RLS and NLMS algorithms; � � ��� � � � � ������ � ������ � �
�� �� � ��� � ��� 	 � ���� 
 � ������ � ���. (a) Initial conver-
gence. (b) Convergence after a change of the impulse response.

numbers with variance , which corresponds
to a typical acoustic impulse response [29]. The vectors
contain a real speech signal sampled at a frequency of 8 kHz.
It is seen that with , the ERLS-DCD algorithm sig-
nificantly outperforms the NLMS algorithm. With increase
in , the MSE performance of the ERLS-DCD algorithm is
significantly improved and, in the steady state, for ,
it outperforms the RLS algorithm. Table XIV shows the com-
plexity of the three algorithms. It is seen that the complexity of
the ERLS-DCD algorithm is significantly lower than that of the
RLS algorithm and it requires only 50% more multiplications
than the NLMS algorithm.

Fig. 5 shows the tracking performance of the ERLS-DCD al-
gorithm in a time-varying environment. The th element
of the impulse response varies in time according to

(36)
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Fig. 3. MSE performance of the SRLS-CG and SRLS-DCD algorithms against
the RLS and NLMS algorithms;� � ��� � � �������� � ����� (for RLS),
� � �� �� � 	��� � ��� � ��� 	 � ���� 
 � ������ � ���.
(a) Initial convergence. (b) Convergence after a change of the impulse response.

where are independent random numbers uniformly dis-
tributed on are independent zero-mean Gaussian
random numbers of unit variance, and is the variation rate.
It is seen that as increases, the MSE performance of
the ERLS-DCD algorithm is approaching that of the RLS
algorithm.

Fig. 6 shows the performance of a fixed-point implementa-
tion of the ERLS-DCD algorithm against the ERLS-DCD and
classical RLS algorithms implemented in floating point. For rep-
resentation of all variables in the algorithm, including the input
data and , elements of the matrix and vector , etc.,

bits are used ( or ). It can be seen that the
accuracy of both the fixed-point ERLS-DCD and floating-point
ERLS-DCD algorithms depends on the parameter that de-
fines the number of bits for representation of the solution vector

. As increases, the steady-state MSE approaches that of the
RLS algorithm. For the fixed-point ERLS-DCD algorithm, for a
fixed , the steady-state MSE depends on . In this scenario,

Fig. 4. Echo cancellation experiment with a real speech signal. MSE perfor-
mance of the ERLS-DCD versus RLS and NLMS algorithms:� � 	��, SNR =
30 dB,� � �����
�� � �����	�� � ����	�� � ��� � ���� � �.

Fig. 5. The tracking performance of the ERLS-DCD algorithm in a
time-varying environment: � � �� � 	 � ���� 
 � ������� � �
� � �
����	� � � �� � � � �.

for , the parameter limits the algorithm per-
formance, while provides enough accuracy to achieve
the floating-point performance.

VI. CONCLUSION

In this paper, we have derived low-complexity RLS adaptive
filtering algorithms. The RLS problem is represented as a se-
quence of auxiliary normal equations which are then approx-
imately solved by using iterative line search methods. A new
variant of the DCD algorithm is proposed; the use of the DCD
algorithm as a line search method has led to implementation
of the exponentially weighted and sliding window transversal
RLS algorithms by using only and multiplications per
sample, respectively. Simulation results show that the perfor-
mance of the proposed adaptive algorithms can be made arbi-
trarily close to that of the classical RLS algorithm. The conver-
gence properties of the proposed algorithms were discussed. A
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Fig. 6. The MSE performance of a fixed-point implementation of the
ERLS-DCD algorithm against the floating point ERLS-DCD and classical RLS
algorithms: � � ��� � � �� � � � � � ��� � ������ � � � �

�� � � � �� � � ��� � �.

TABLE XIII
COMPLEXITY OF ADAPTIVE ALGORITHMS 	� � ��


TABLE XIV
COMPLEXITY OF ADAPTIVE ALGORITHMS 	� � ���


more detailed analysis of the algorithm performance will be pre-
sented in another publication. A fixed-point FPGA implementa-
tion of the exponentially weighted DCD-based RLS algorithms
has also been described, which shows that the proposed algo-
rithms are simple for finite precision implementation, require
small chip resources, and exhibit numerical stability.
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